日本鉱物科学会(Japan Association of Mineralogical Sciences)は平成19年9月に日本鉱物科学会と日本岩石鉱物鉱床学会の2つの学会が統合・合併されて発足し、現在は大学の研究者を中心におよそ1000名の会員数を擁しています。日本鉱物科学会は鉱物科学およびこれに関する諸分野の学問の進歩と普及をはかることを目的としており、「出版物の発行(和文誌、英文誌、その他)」、「総会、講演会、研究部会、その他学術に関する集会および行事の開催」「研究の奨励および業績の表彰」等を主な事業として活動しています。今年、2014年は世界結晶年であり、世界結晶年とのコラボセッションもありました。
Fig.1の①を基底状態、②を励起状態といいます。励起状態は不安定なため、通常発熱などで少しエネルギー順位の低い③の状態に一時的に移行します。③から元の基底状態④に戻る際に発光します。②から③へ移行する際にエネルギーのロスがありますから、励起させる光の波長(②-①のエネルギーに相当)よりも長い波長の光(③-④のエネルギーに相当)が発光します。この発光は物質の不純物や欠陥に影響を受けやすいため、発光を分光し詳細に解析をすることによって、物質中の欠陥や不純物の情報を得ることが可能となります。PL分析は、主に超格子構造や半導体結晶の構造解析などに用いられています。結晶中の不純物や欠陥に起因した発光の強度分布を測定し、結晶の均一性や欠陥の分布状況を高い分解能で評価します。この手法の特徴として、測定の際に試料を破壊することがなく、また特殊な前処理を必要としないことが挙げられます。装置は前回( C G L 通信No.21)でご紹介した顕微ラマン分光装置と併用することができます。ラマン分光は既述のとおり、レーザー光を照射した際に発生する微弱なラマン散乱を検知しますが、その際の発光を検知するのがPL分析です。励起源のレーザーも検出器も併用できますが、分析結果の表示が異なります。ラマン分光法では単位はcm–1を用いますが、PL分析ではnmで表記します。
Fig.2 顕微ラマン分光装置(PL分析も同装置で行う)
測定方法は波長と強度の関係を観察するためのスペクトル測定が一般的ですが、近年では試料から放出される様々な発光の強度分布を測定するマッピング測定も可能になりました。
PL分析では、励起する波長の種類において発光するピークの種類や強度も異なります。従って、期待される発光センタに応じた励起波長を選択することが重要となります。
例えば、ダイヤモンドのPLを測定する場合、N3センタ(415.2nm)や491センタ等の検出には325nm(UV)波長のHe/Cd laserが、H3センタ(503.2nm)、3Hセンタ(503.5nm)及びH4センタ(496.1nm)等の検出には488nm波長のArイオンlaser(青色)が有効となります。また、NV0センタ(575nm)、NV-センタ( 6 3 7 n m )及びG R 1 センタ( 7 4 1 n m )の検出には514nm波長のArイオンlaser(緑色)が、737センタ(Si-V)等の検出には、633 nm波長の He-Ne laser(赤色) が有効です。近年ではレーザー源の発展もめざましく、多くの波長で半導体固体レーザーが使用されるようになり、サイズもコンパクトで寿命も長くなりました。弊社では2台の装置に上記4種波長、計6本のレーザーを目的に応じて有効に使用しています。
その後、1999年12月にNovaDiamond社によるHPHT処理ダイヤモンドが公表されました。これは、先に発表されたGE社の製品がⅡ型なのに対し、Ⅰ型の褐色ダイヤモンドを独自のHPHT処理技術により黄色~緑色に改変したものです。NovaDiamond社はNovatek社の完全出資会社で、HPHT処理されたダイヤモンドを宝石市場に提供する目的で設立されています。H P H T 処理はダイヤモンドを合成する高圧発生技術があれば可能です。従って処理を公表しているGE社及び、NovaDiamond社以外にも設備と技術があれば処理を行うことが可能です。
2011年4月、ドバイで開催された世界ダイヤモンド取引所連盟(WFDB)のプレジデントミーティングにおいて、H P H T 処理された石が適切な情報開示なしに意図的に鑑別ラボに持ち込まれている件が話題となりました。WFDBではHPHT処理ダイヤモンドを詐欺的に取り扱った業者には罰則を加えることや、鑑別ラボにも依頼者の公表が求められたようです。