【参考文献】
[1] J. D. Bass and J. B. Parise (2008) Deep earth and recent development in mineral physics. Elements,4, 157–163.
[2] T. Hattori, A. Sano–Furukawa, H. Arima, K. Komatsu, A. Yamada, Y. Inamura, T. Nakatani, Y. Seto, T. Nagai, W. Utsumi, T. Iitaka, H. Kagi, Y. Katayama, T. Inoue, T. Otomo, K. Suzuya, T. Kamiyama, M. Arai, T. Yagi (2015) Design and performance of high–pressure PLANET beamline at pulsed neutron source at J–PARC. Nuclear Instruments and Methods in Physics Research A, 780, 55.
[3] O. Navon (1991) High internal pressures in diamond fluid inclusions determined by infrared absorption. Nature, 353, 746.
[4] M. Schrauder, O. Navon (1993) Solid carbon dioxide in a natural diamond. Nature, 365, 42.
[5] H. Kagi, R. Lu, P. Davidson, A. F. Goncharov, H.–k. Mao, R. J. Hemley (2000) Evidence for ice VI as an inclusion in cuboid diamonds from high P–T near infrared spectroscopy. Mineralogical Magazine, 64, 1057.
[6] O. Tschauner, S. Huang, E. Greenberg, V. B. Prakapenka, C. Ma, G. R. Rossman, A. H. Shen, D. Zhang, M. Newville, A. Lanzirotti, K. Tait (2018) Ice–VII inclusions in diamonds: Evidence for aqueous fluid in Earth’s deep mantle. Science 359, 1136.
[7] B.H. Scott Smith, R.V. Danchin, J.W. Harris, K.J. Stracke (1984) Kimberlites near Orroroo, South Australia. In: Kornprobst, J. (Ed.), Kimberlites I: Kimberlites and related rocks. Elsevier, Amsterdam, pp. 121–142.
[8] B. Harte, J.W. Harris, M.T. Hutchison, G.R. Watt, M.C. Wilding (1999) Lower mantle mineral associations in diamonds from Sao Luiz, Brazil. In: Fei, Y., Bertka, C.M., Mysen, B.O. (Eds.), Mantle Petrology: Field Observations and High Pressure Experimentation: A Tribute to Francis R. (Joe) Boyd: Geochemical Society Special Publication No. 6, pp. 125–153.
[9] B. Harte (2010) Diamond formation in the deep mantle: the record of mineral inclusions and their distribution in relation to mantle dehydration zones. Mineralogical Magazine, 74, 189.
[10] F. Kaminsky (2012) Mineralogy of the lower mantle: A review of ‘super–deep’ mineral inclusions in diamond. Earth–Science Reviews, 110, 127.
[11] F. Nestola, N. Korolev, M. Kopylova, N. Rotiroti, D. G. Pearson, M. G. Pamato, M. Alvaro, L. Peruzzo, J. J. Gurney, A. E. Moore, J. Davidson (2018) CaSiO3 perovskite in diamond indicates the recycling of oceanic crust into the lower mantle. Nature 555, 237.
[12] M. J. Walter, S.C. Kohn, D. Araujo, G. P. Bulanova, C. B. Smith, E. Gaillou, J. Wang, A. Steele, S. B. Shirey (2011) Deep mantle cycling of oceanic crust: Evidence from diamonds and their mineral inclusions. Science, 334, 54.
[13] D.A. Zedgenizov, H. Kagi, V.S. Shatsky, A.L. Ragozin (2014) Local variations of carbon isotope composition in diamonds from São–Luis (Brazil): Evidence for heterogenous carbon reservoir in sublithospheric mantle. Chemical Geology, 363, 114.
[14] D. G. Pearson, F. E. Brenker, F. Nestola, J. McNeill, L. Nasdala, M. T. Hutchison, S. Matveev, K. Mather, G. Silversmit, S. Schmitz, B. Vekemans, L. Vincze (2014) Hydrous mantle transition zone indicated by ringwoodite included within diamond. Nature 507, 221.
[15] D. L. Kohlstedt, H. Keppler, D. C. Rubie (1996) Solubility of water in the a,b and g phases of (Mg,Fe)2SiO4. Contributions to Mineralogy and Petrology, 123, 345.
[16] F. Kaminsky, R. Wirth (2017) Nitrides and carbonitrides from the lowermost mantle and their importance in the search for Earth’s “lost” nitrogen. American Mineralogist, 102, 1667.
[17] J. Rudloff–Grund, F.E. Brenker, K. Marquardt, D. Howell, A. Schreiber, S.Y. O’Reilly, W.L. Griffin, F.V. Kaminsky (2016) Nitrogen nanoinclusions in milky diamonds from Juina area, Mato Grosso State, Brazil. Lithos, 365, 57.
[18] H. Kagi, D. A. Zedgenizov, H. Ohfuji, H. Ishibashi (2016) Micro– and nano–inclusions in a superdeep diamond from Sao Luiz, Brazil. Geochemistry International, 54, 834.
[19] O. Navon, R. Wirth, C. Schmidt, B. M. Jablon, A. Schreiber, S. Emmanuel (2017) Solid molecular nitrogen (δ–N2) inclusions in Juina diamonds: Exsolution at the base of the transition zone. Earth and Planetary Science Letters, 464, 237.
[20] E. M. Smith, S. B. Shirey, S. H. Richardson, F. Nestola, E. S. Bullock, J. Wang, W. Wang (2018) Blue boron–bearing diamonds from Earth’s lower mantle. Nature, 560, 84–87.
[21] H. Kagi, S. Odake, S. Fukura, and D. Zedgenizov D. (2009) Raman spectroscopic estimation of depth of diamond origin: technical developments and the application. Russian Geology and Geophysics, 50, 1183–1187
[22] N.J. Cayzer, S. Odake, B. Harte and H. Kagi (2008) Plastic deformation of lower mantle diamonds by inclusion phase transformations. European Journal of Mineralogy, 20, 333–339
2015年頃から世界的な宝石市場において大量のメレサイズのHPHT合成ダイヤモンドが流通を始めており、業界関係者はその対応に追われている。紫外線透過性、紫外線発光、赤外分光などを応用した各種の判別器機が開発されているが、装置の原理が未公表のブラックボックス的なものも販売されている。これらの中で紫外線下での燐光を検出する装置はルースでもジュエリーにセットされた状態でも短時間で検査できるという利便性があり、国内の輸入業者を中心に幅広く利用されている。
2018年4月、香港の器機開発業者から「HPHT–grown diamonds might escape detection as synthetics, once they are treated with irradiation」というアラートが配信された(Diamond Services, 2018)。HPHT合成ダイヤモンドは紫外線照射後、ミリ秒~数十秒の燐光があり、燐光を示さない天然と区別する事ができる。しかし、一旦照射処理が施されると室温で燐光を測定する装置では識別ができなくなるというものである。このアラートに呼応してIIDGRやGIAは自社製の判別装置における信頼性に問題はないと報告している(Rapaport News, 2018)。
さて、このような背景のもと、電子線照射により無色~ほぼ無色のHPHT合成ダイヤモンドの燐光が減衰するのかの実験を行った。実験に用いた試料は0.008–0.032ctの見かけ上無色の中国製HPHT合成ダイヤモンドで、それぞれ5個ずつAとBの2つのグループに分けて段階的に照射を行った。
電子線はコッククロフトウォルトン型の放射線発生装置を用いて、
試料Aグループには総線量:1.0×1015e–/cm2、10.0×1015e–/cm2、50.0×1015e–/cm2、
Bグループには総線量:5.0×1015e–/cm2、25.0×1015e–/cm2、100.0×1015e–/cm2をそれぞれ照射した。
これらを国内での利用率の高い中国製の判別装置を用いて照射前後の蛍光と燐光の写真を撮影した。その結果を図–1と図–2に示す。試料Aグループにおいて総線量:1.0×1015e–/cm2では燐光に減衰は見られないが、10.0×1015e–/cm2では若干の燐光の減衰が見られた。50.0×1015e–/cm2では明らかな減衰が見られ、②の試料では完全に消滅した。試料Bグループにおいては総線量:5.0×1015e–/cm2で燐光に若干の減衰が見られ、25.0×1015e–/cm2では明らかな減衰が見られ、①の試料では完全に消滅した。100.0×1015e–/cm2では未処理で燐光の非常に強かった試料②を除いて他の4個はすべて燐光が消失した。図–3は試料Aグループの50.0×1015e–/cm2照射後の試料と燐光の写真である。試料①③⑤は白色のグレーダーの上に乗せてルーペで観察するとわずかに青色味を感じる。これは電子線照射により、GR1センタが形成したためである。しかし、この程度の淡い色調はジュエリーにセットされてしまえばほぼ無色に見えると思われる。図–4は試料Bグループの100.0×1015e–/cm2照射後の試料と燐光の写真である.グレーダーに乗せてルーペで観察すると、②の試料はほぼ無色のままであったが、他の4個は明らかなGR1センタに因る青色味が感じられた。このように照射する電子線の強度が強いとGR1センタに因り青色に着色する。青色に着色する程度の強度で照射されたものはほぼ燐光がなくなったが(5個中4個)、ほぼ無色のまま変化のない強度では燐光が完全に消滅したのは一部(5個中1個)であった。
BeとNb、Taには非常によい相関関係が認められるが、Tiとは相関関係は認められない。また、分析点01–57について、Be–Nb、Be–Taの濃度プロットを行った結果を図4に示す。これらは筆者らの先行研究でカンボジア、ナイジェリア、ラオス等の玄武岩関連のブルーサファイアに見られた相関関係に一致する(文献4)。Be、Nb、Taの濃度関係からmol比を見積もったところ、Be : Nb : Ta ≒ 3 : 1 : 4の結果を得ることができた。
« FIB(Focused Ion Beam、集束イオンビーム)装置とは »
FIB装置は、集束したイオンビームを試料に照射することにより観察や加工を行う装置である。
図Aは本研究で用いたFIB装置、FEI社Quanta200 3DS(京都大学地球惑星科学科地質学鉱物学分野鉱物学研究室所属)の写真である。
SEM(Scanning Electron Microscopy、走査型電子顕微鏡)で観察しながら、所定の位置をnm〜μmの正確さで切り出すことが可能である。TEM(Transmission Electron Microscopy、透過型電子顕微鏡)観察試料には厚さ100 nm程度の薄膜に試料を切り出さなければならないため、TEM観察試料の作成にFIBを使用することが近年では一般的である。
図BはFIB装置の概略図である。
LIMSは液体金属イオン源(Liquid Metal Ion Source)の略であり、イオン材料として通常Ga(ガリウム)が用いられる。Ga(ガリウム)をイオン材料として使う理由には原子量が69.723と比較的重く、加工に十分なスパッタリング速度が得られること、また融点が29.8℃と低く、加熱後は過冷却減少で室温でも液体の状態を維持でき、針材料のW(タングステン)と反応せず流れが安定すること、が挙げられる。このLIMSから放出されたイオンを設定領域に照射し、加工を行うのがFIB装置ということになる。
マダガスカル、ディエゴ産ブルーサファイアに含まれるBeの起源についてLA–ICP–MS、TEMを用いて検討を行った。LA–ICP–MS分析の結果、Beの濃度とNb、Taの濃度には他の玄武岩関係のブルーサファイアと同様の相関関係があり、それらのモル比はBe : Nb : Ta ≒ 3 : 1 : 4であることが新たにわかった。また、透過型電子顕微鏡観察の結果、Beが含まれる部分には幅10 nm、長さ40 nm程度のナノインクルージョンが存在することが判明し、Ti、Nb、Taが含まれており、Ti、Taのモル比はTi : Ta ≒ 4 : 1程度であることがわかった。回折像を調べた結果、コランダムとは相が異なる鉱物であることがわかったが、相は明らかにできなかった。LA–ICP–MSとTEMの結果を合わせると、ナノインクルージョンはBe、Ti、Nb、Taからなる鉱物であり、検出されるBeはナノインクルージョンの存在密度に比例すると考えられる。また、Be、Ti、Nb、Taのモル比はBe : Ti : Nb : Ta ≒ 3 : 16 : 1 : 4程度であり、本研究では構造を決定することはできなかったが、Shen et al. (2012)(文献5)の結果と併せて考慮すると、知られていない未知の鉱物である可能性がある。
◆文献
1.Emmett J.L., Scarrat K., McClure S.F., Moses T., Douthit T.R., Hughes R., Novak S., Shigley J.E., Wang W., Bordelon O., Kane R.E. (2013) Beryllium diffusion of Ruby and Sapphire. Gems & Gemology, 39(2), 84–135
2.Emmett, J.E., Wang W. (2007) The Corundum group, Memo to the Corundum Group: How much beryllium is too much in blue sapphire – the role of quantitative spectroscopy. 26 August 2007
3.Shen A., McClure S., Breeding C. M., Scarratt K., Wang W., Smith C., Shigley J. (2007) Beryllium in Corundum: The Consequences for Blue Sapphire. GIA Insider, Vol.9, Issue 2
4.Emori K., Kitawaki H., Okano M., (2014) Beryllium-Diffused Corundum in the Japanese Market, and Assessing the Natural vs. Diffused Origin of Beryllium in Sapphire. Journal of Gemmology, 34(2), 2014, 130–137
5.Shen A. and Wirth R. (2012) Beryllium-bearing nano-inclusions identified in untreated Madagascar sapphire. Gems and Gemology, 48(2), 150–151
Tokyo Gem Science LLC.の阿衣アヒマディ博士には、今回実験に用いたモザンビーク産ルビーの試料をご提供いただいた。ここに記して感謝いたします。◆
6.文献
1.Pardieu V., Jacquat S., Senoble J., Bryl L.–p., Hughes R., Smith M. (2009) Expedition report to the ruby mining sites in northern Mozambique (Niassa and Cabo Delgado provinces).
https://www.gia.edu/doc/Expedition–report–Ruby–mining–sites–Northern–Mozambique.pdf
2.Chapin M., Pardiew V., Lucas A. (2015) Mozambique: A ruby discovery for the 21st Century.
G&G, vol.51, No.1, pp44–54
3.Smith C. (2010) Mozambique rubies. Gems & Jewellery, vol.19, No.1, pp3–5
4.Pardieu V., Sturman N., Saeseaw S., Du Toit G., Thirangoon K. (2010) FAPFH/GFF treated ruby from Mozambique: A preliminary report.
https://www.gia.edu/doc/FAPFH–GFF–Treated–Ruby–from–Mozambique–A–Preliminary–Report.
5.Pardieu V., Saeseaw S., Detroyat S., Raynaud V., Sangsawong S., Bhusrisom T., Engniwat S., Muyal J. (2015) “Low temperature” heat treatment of Mozambique ruby–result report.
https://www.gia.edu/doc/Moz_Ruby_LowHT_US.
6.Sripoonjan T., Wanthanachaisaeng B., Leelawatanasuk T. (2016) Phase transformation of epigenetic iron staining: Indication of low-temperature heat treatment in Mozambique ruby.
Journal of Gemmology, vol.35, No.2, pp156–161
7.Smith C.P. (1995) A contribution to understanding the infrared spectra of rubies from Mong Hsu, Myanmar. Journal of Gemmology, vol.24, No.5, pp321-335
8.GAAJ–Zenhokyo Lab. (2007) ルビーおよびサファイアの加熱の履歴に関する鑑別. Gemmology, 2007年2月号pp24–27
9.Hughes R., Manorotkul W., Hughes E. (2015) Ruby & Sapphire A gemologist’s guide. Gem and Jewelry Institute of Thailand, Bangkok.
10.GAAJ–Zenhokyo Lab. (2005) 産地鑑別と加熱・非加熱鑑別の正確性と限界について. Gemmology, 2005年9月号pp4–7
11.Beran A., Rossman G.R. (2006) OH in naturally occurring corundum. European Journal of Mineralogy, vol.18, No.4, pp441–447
12.Pardieu V., Supharart S., Muyal J., Chauvire B., Massi L., Sturman N. (2013) Rubies from the Montepuez area (Mozambique).
https://www.gia.edu/doc/GIA_Ruby_Montepuez_Mozambique.pdf
13.川野潤.,北脇裕士.,阿依アヒマディ.,岡野誠. (2009) 新産地:モザンビーク産ルビー. Gemmology, 2009年12月号pp13-15
14.Phlayrahan A., Monarumit N., Satitkune S., Wathanakul P. (2016) Phase Tranformation of diaspore and its application for indicating the low temperature–heat treatment of corundum samples.
Proceedings of GIT2014, pp167–170
15.Phlayrahan A., Monarumit N., Loetwanitsakul L., Satikune S., Wathanakul P. (2013) The alteration of structural OH group in FTIR spectra on ruby samples from Mong Hsu, Myanmar and Montepuez, Mozambique. Proceedings of 33rd IGC, pp154–157
16.Koivula J.I. (2013) Useful visual clue indicating corundum heat treatment. G&G, vol.49, No.3, pp160–161
17.Liu H., Chen T., Zou X., Qing C., Frost R.L. (2013) Thermal treatment of natural goethite: Thermal transformation and physical properties. Thermochimica Acta, vol.568, pp115–121
18.Kammerling R.C., Koivula J.I. (1989) Thermal alteration of inclusions in “rutilated” topaz. G&G, vol.25, No.3, pp165–167
文献
1.Kitawaki H., Abduriyim A., Kawano J., Okano M. (2010) Identification of CVD–grown synthetic melee pink diamond. Journal of Gemmology, vol.32, No.1–4, pp23–30
2.Wang W., Doering P., Tower J., Lu R., Eaton-Magaňa S., Johnson P., Emerson E., Moses T. (2010) Strongly Colored . Pink CVD Lab–Grown Diamonds. G&G, vol.46, No.1, pp4–17
3.Moe K.S., D’ Haenens–Johansson U., Wang W. (2015) LPHT–annealed pink CVD synthetic diamond. G&G, Vol.51, No.2, pp182–183
4.Theije F.K., Schermer J.J. and Enckevort W.J.p. (2000) Effect of nitrogen impurities on the CVD growth of diamond: step bunching in theory and experiment. Diamond and Related Materials, vol.9, pp1439–1449
5.Wang W., and Moses T.M. (2011) Gem quality CVD synthetic diamonds from Gemesis. G&G, vol.47, No.3, pp227–228
6.Meng Y.F., Yan C.–S., Lai J., Krasnicki S., Shu H., Yu T., Ling Q., Mao H.K., Hemley R.J. (2008) Enhanced optical properties of chemical vapour deposited single crystal diamond by low–pressure/ high–temperature annealing. Proceeding of the National Academy of Sciences, vol.105, No.46, pp17620–17625
7.Liang Q., Yan C.–S., Meng Y., Lai J., Krasnicki S., Mao H.–K., Hemley R.J. (2009) Recent advanced in high–growth rate single–crystal CVD diamond. Diamond and Related Materials, vol.18, pp698–703
8.Dyer H B., Raal F A., Du Preez L., Loubser J H N. (1965) Optical absorption features associated with paramagnetic nitrogen in diamond. Philosophical Magazine, Vol.11, No.112, pp763–774
9.Khan R. U.A., Martineau P.M., Cann B.I., Newton M.E., Dhillon H.K., Twitchen D.J. (2010) Color alterations in CVD synthetic diamond with heat and UV exposure: Implications for color grading and identification. G&G, vol.46, No.1, pp18–26
10.Collins A.T. (1978) Migration of nitrogen in electron–irradiated type Ib diamond. Journal of Physics C: Solid State Physics, vol.11, No.10, ppL417–L422
11.Lawson S.C., Fisher D., Hunt D.C., Newton M.E. (1998) On the existence of positiv.ely charged single–substitutional nitrogen in diamond. Journal of Physics: Condensed Matter, vol.10, No.27, pp6171–6180
12.Wang W., Hall M.S., Moe K.S., Tower J., Moses T.M. (2007) Latest generation CVD–grown synthetic diamonds from Apollo Diamond Inc. G&G, Vol.43, No.4, pp294–312
13.Charles S.J., Butler J.E., Feygelson B.N., Newton M.E., Carroll D.L., Steeds J.W., Darwish H., Yan C.–S., Mao H.K., Hemley R.J. (2004) Characterization of nitrogen doped chemical vapour deposited single crystal diamond before and after high pressure, high temperature annealing. Physica Status Solidi (a), vol.201, No.11, pp2473–2485
14.Martineau P.M., Lawson S.C., Taylor A.J., Quinn S.J., Evans D.J.F., and Crowder M.J. (2004) Identification of synthetic diamond grown using chemical vapor deposition (CVD). G&G, vol.40, No.1, pp2–25
15.Fisher D., Evans D. J. F., Glover C. Kelly C. J., Sheehy M.J. and Summerton G.C. (2006) The vacancy as a probe of the strain in type Ⅱa diamonds. Diamond and Related Materials, vol.15, pp1636–1642
16.Twitchen D.J., Matineau P.M., Scarsbrook G.A. (2007) coloured diamond. Patent publication number US2007079752