
CGL通信 vol62 「エメラルドの原産地鑑別に有用なインクルージョン」

リサーチ室 趙政皓・江森健太郎

エメラルドは、ベリルの一種であり、古くから貴重な宝石として扱われている。最初は中央アジアとエジプトのエメラルドが知られていたが、16世紀になってスペインの征服者がコロンビアの高品質のエメラルドを国際市場に持ち込んだ時、世界中が驚かされた。現在に至って、コロンビアはエメラルドの最も重要な産地である。19世紀から20世紀にかけて、コロンビアのエメラルドに比べても劣らない新しい鉱山が世界中に出現した。高品質のエメラルドを産出するブラジル、ロシア、ザンビアの他に、マダガスカルやエチオピア、アフガニスタンなどにも小さな鉱床が発見された。加えて昨今の流通の透明性などに対する社会的欲求のため、エメラルドの産地鑑別の重要性が急速に高まっている。
本稿ではエメラルドの原産地鑑別に有用なインクルージョンについて概要を説明する。
エメラルドの形成
ベリルの化学組成はBe₃Al₂(SiO₃)₆であり、エメラルドはベリル中に含まれるクロム(Cr)とバナジウム(V)によって緑色を呈する宝石変種である。上部大陸地殻に存在するベリリウム(Be)は2 ppm程度しかない上、クロム(Cr)とバナジウム(V)も海洋地殻や上部マントルに濃縮している。そのため、エメラルドの形成に必要なベリリウム(Be)とクロム(Cr)が同時に存在するためには限定された地質学的条件が必要である。故に、エメラルドは産出量が限られ、希少性の高い宝石となっている。
エメラルドは形成する地質学的条件によっていくつかのタイプに分類される。例えば、G. Giuliani et al. (2019) はエメラルドを産出する地域の地質的環境を考察し、花崗岩マグマに起因するかどうかによってエメラルドを構造–変成関連タイプと構造–マグマ関連タイプに分類した。一方、S. Saeseaw et al. (2019) は地質学的形成条件を考えた上、コロンビアのエメラルドの特徴と類似するかどうかによってエメラルドを「熱水/変成タイプ」と「片岩ホスト/マグマタイプ」に分類した。本稿では後者を参考し、表1には、世界各地の重要なエメラルドの鉱床のタイプを示した。
片岩ホスト/マグマタイプのエメラルド鉱床は世界中に分布しており、最も数の多いタイプとなっている。このタイプのエメラルドの多くは花崗岩マグマに起因するものであり、その典型的な形成モデルの概略を図1に示した。その形成過程には、ベリリウム(Be)を含む酸性マグマがクロム(Cr)、バナジウム(V)を含む苦鉄質岩や超苦鉄質岩に侵入することによってベリリウム(Be)とクロム(Cr)、バナジウム(V)が同じ場所に濃縮され、エメラルドを形成した。このタイプのエメラルドの普遍的な内部特徴は、ブロック状または不規則な多相インクルージョンを含むことであり、バイオタイトなどの固相インクルージョンも多い。
熱水/変成タイプのエメラルドの鉱床は比較的に少なく、エメラルドの形成は主に熱水に起因するものとなっている。典型的な例として、図2にコロンビアの熱水/変成タイプのエメラルドの形成モデルを示した。深い地層からの熱水によって岩石内部にある元素が移動し、結果としてエメラルドの形成を促した。このタイプのエメラルドの普遍的な内部特徴は、縁がギザギザな多相インクルージョンを含むことである。
次節から、商業的に重要な各産地のエメラルドの特徴的なインクルージョンについて紹介する。
表1エメラルドの分類


コロンビア
コロンビアは最も重要なエメラルドの産地であり、16世紀から高品質のエメラルドを産出している。現在でも日本国内市場には50~60 %のシェアがある。コロンビアのエメラルド鉱床は東コルディレラ山脈の堆積盆地の両側に分布しており、砂岩、石灰岩、黒い頁岩、蒸発岩で構成する堆積岩の中からエメラルドが産出している。盆地の東側は6500万年前に形成されたガチャラ、チボールとマカナル鉱床;西側には3800万~3200万年前に形成されたムゾ、コスクェス、ラ・ピタなどの鉱床がある(G. Giuliani et al., 2019)。これらのエメラルド鉱床はすべて熱水/変成タイプに属する。この地で生じた大規模な熱水変成作用が、蒸発岩から高濃度の塩水(~40 wt%相当の塩化ナトリウム(NaCl))の形成を引き起こした。その結果、黒い頁岩中の豊富な有機物からベリリウム(Be)、クロム(Cr)、バナジウム(V)が放出され、エメラルドが形成した。
コロンビアのエメラルドは形成中、濃度の高い塩水を取り込むため、図3に示したような輪郭がギザギザの三相(固相、液相、気相)インクルージョンが観察される。多くの場合、それらの三相インクルージョンに含まれる気泡は二酸化炭素(CO2)であり、固体は塩水から析出された塩化ナトリウム(NaCl)である。このようなギザギザなインクルージョンは、アフガニスタン・パンジシールなど他の熱水/変成タイプのエメラルドにも見られることが多いが、S. Saeseaw et al. (2019)によると、長さ500 μmを超えるもの(図4)はコロンビア特有のものとなる。


エメラルドの形成過程中、熱水中の硫酸塩と黒い頁岩に含まれる有機物と化学反応を起こし、ベリリウム(Be)、クロム(Cr)、バナジウム(V)を放出すると同時に、有機物の還元反応によって硫化水素(H₂S)と炭酸水素イオン(HCO₃ )が生成する。そして最終的には金属イオンと結合してパイライト、カルサイト、ドロマイトなどが生成される(図5–6)。これがコロンビアのエメラルドにしばしばパイライトなどが観察される原因である。同時に、この地域の鉄(Fe)成分がほとんどパイライトとして結晶化するため、結果的にコロンビア産エメラルドに取り込まれる鉄(Fe)の濃度は低くなる。ただし、これらの鉱物固体インクルージョンは他の鉱床のエメラルドにも見られるため、産地鑑別には強力な指標とはなれない。その他、パリサイトはコロンビアのエメラルドしか報告されていないが、観察できるのは極めて珍しい(K. Thu, 2021)。


原産地鑑別に強力な指標となるGota de Aceite(スペイン語で「油の滴」を意味する)は、コロンビアのエメラルドのもう一つの特徴であり、これはエメラルド内部の異常な成長構造に起因するものである(図7–8)。類似した成長構造はアフガニスタンやザンビアなど他の鉱床からのエメラルドでも稀に観察されることがあるが、観察頻度は極めて低い(N. Ahline, 2017; R. Zellagui, 2022)。多くの場合、Gota de Aceiteの構造は結晶の基底面と平行に分布しており、光軸方向から観察できる。その他、図9に示した鋸歯状の成長線もコロンビアのエメラルドの特徴である。これは結晶のc軸方向にギザギザと伸長した分域境界で、熱水/変成タイプのエメラルドの特徴と考えられる。



アフガニスタン
アフガニスタンのエメラルドは紀元前から知られており、18世紀以前は歴史的に重要な産地であった。1970年代以降、商業的に採掘されるようになったが、一般に高品質なものは少ない。しかし、時折コロンビアのエメラルドに匹敵する大粒で透明度の高いエメラルドが産出することがある。2017年に新たな鉱床も発見され、再び注目されている。アフガニスタンのエメラルドはパンジシール谷から産出しており、熱水/変成タイプに属する。この地域には断層が多く、エメラルド鉱床は混成岩、片麻岩、片岩、大理石と角閃岩で形成された原生代の変成基盤中に見られる。片岩が激しく破砕され、流体循環と熱水変成作用の影響を受けている。エメラルドは、白雲母、トルマリン、アルバイト、パイライト、ルチル、ドロマイトに関連する空洞と石英脈中から発見される。Ar–Ar法で測定した年齢は2300±100万年であり、クロム(Cr)とベリリウム(Be)の由来はまだわかっていない。
コロンビアの石と同じく熱水/変成タイプに属するため、アフガニスタンのエメラルドにも輪郭がギザギザな三相インクルージョンが観察できる(図10–11)。しかし、アフガニスタンのエメラルドの三相インクルージョンは、細長い針のような形をする傾向があり、その中に複数の固体鉱物インクルージョンが含まれることがよくある。鉱物固体インクルージョンとして、パイライト、ライモナイト、ベリル、炭酸塩鉱物、長石などが見られる。

一つのインクルージに複数の固体インクルージョンが含まれている。視野1.0 mm。

M. S. Krzemnicki et al. (2021)によると、パンジシール渓谷のエメラルドは2つのタイプに分けることができ、そのうちタイプ2に分類されるものは固体インクルージョンが少ないだけではなく、鉄(Fe)やスカンジウム(Sc)の濃度も低い。そのため屈折率や紫外–可視分光スペクトルは、コロンビア産エメラルドの特徴と重複しており、産地鑑別には注意深く観察する必要がある。
ザンビア(カフブ)
ザンビアには複数のエメラルド鉱床があり、そのうちムサカシ地域のエメラルドは熱水/変成タイプであり、カフブ地域のエメラルドは片岩ホスト/マグマタイプのエメラルドである。ムサカシ地域の鉱床は2002年頃に発見された新しい鉱床であり、未解明の部分も多く、現時点においては産出量も限定的なため本稿では紹介しない。カフブ地域のエメラルドは1930年代に発見され、大規模な鉱山開発が行われた。日本市場では、ザンビアのエメラルドはコロンビアに次いで多く、20%程度のシェアがあり、その大部分はカフブ地域のエメラルドである。カフブのエメラルド鉱床は典型的な花崗岩マグマに起因するタイプであり、主に変成した苦鉄質–超苦鉄質岩中から発見される。鉄(Fe)の含有量が多いため、ここのエメラルドは青味が強い。
前述したように、片岩ホスト/マグマタイプのエメラルドの特徴として、ザンビア・カフブのエメラルドには図12に示した輪郭が長方形の角型二相インクルージョンが観察される。これらは後述するブラジル産エメラルド中の二相インクルージョンよりも、輪郭が丸くない明瞭な角型である。不規則な二相インクルージョンの中でも鋭い角を持つものが度々見られるが(図13)、後述するブラジルなどの産地のエメラルドにある丸い輪郭をもつものもある。


鉱物固体インクルージョンとして、マグネタイト、ヘマタイト、イルメナイトなどの酸化物で構成される樹枝状や小板状のインクルージョンが観察される(図14)。この形状のものはブラジルのエメラルドに報告されることが少ない。また、ブラジルのエメラルドと同様、丸みを帯びた雲母インクルージョンが観察される(図15)。その他、アパタイト、パイライト、タルク、バライト、アルバイト、カルサイトなども報告されている。







ブラジル(ミナス・ジェライスなど)
ブラジルには複数のエメラルド鉱床がある。それらの大部分は花崗岩マグマに起因する片岩ホスト/マグマタイプに属し、現在主にミナス・ジェライス州(74%、イタビラやノバエラ鉱床など)とバーイア州(22%、カルナイーバ鉱床など)から産出している(G. Giuliani et al., 2019)。前文で説明したように、このタイプのエメラルド鉱床は花崗岩マグマが苦鉄質–超苦鉄質岩に侵入することによって形成したものである。
これらのエメラルドには、ブロック状あるいは不規則な二相インクルージョンが観察されることが多い(図16–17)。このようなインクルージョンは他の片岩ホスト/マグマタイプのエメラルドにもよく見られるため、産地鑑別に使える強力な指標にはなりにくい。また、ミナス・ジェライス州イタビラからのエメラルドの特徴として、図18に示した「雨のような」チューブインクルージョンが観察される。鉱物固体インクルージョンとして、丸みを帯びた初生の黒褐色雲母と、同生や後生の疑似六角形の形をする褐色の雲母インクルージョンが観察される(図19–20)。しかし、前述した二相インクルージョンと同様、他の片岩ホスト/マグマタイプエメラルドにも観察されることが多いため、強力な指標にはならない。
ブラジル(ゴイアス)
ゴイアス州のエメラルドも片岩ホスト/マグマタイプに属するが、ブラジルの他の鉱床と異なり、形成過程中に熱水の変成作用が重要な役割を担っていると考えられている。熱水の浸透は剪断帯などの構造にコントロールされている。ペグマタイト脈はなく、エメラルドは金雲母および金雲母化した炭酸塩–タルク片岩の変成火山堆積層内に散在する。1980年代に発見されたサンタ・テレジーニャは90年代までに大量に採掘されて、日本市場では多く流通していた。この鉱床のエメラルドには高濃度のセシウム(Cs)が含まれるという特徴があり、このことから、サンタ・テレジーニャのエメラルドはマグマ流体と変成流体の混合体に起因するものという仮説が挙げられている(C. Aurisicchio et al., 2018)。
花崗岩マグマに直接起因しないが、ゴイアス州のエメラルドも片岩ホスト/マグマタイプに属し、ブロック状の二相インクルージョンが観察される(図21)。また、ゴイアス州のエメラルドの最大の特徴である大量に散在するヘルシナイトが観察されることがある(図22)。ただし、他のブラジルの鉱床やザンビア・カフブなどの鉱床からのエメラルドに含まれる大量に散在するマグネタイトまたはクロマイトのインクルージョンと区別しにくい。また、同じような形として、ゴイアス州のエメラルドに大量のクロマイトが観察されることがある(T. T. H. Le, 2008)。鑑別する際は注意深く扱う必要がある。


ロシア
ロシアのエメラルドは1830年代からウラル山脈地域から産出されて、1990年代半ばではほとんどの採掘作業が終止されたが、2010年代にロシアの国営企業の下で採掘が再開された。この地域のエメラルド鉱床も花崗岩マグマに起因する片岩ホスト/マグマタイプに属する。ただし鉄が少なくて、色が淡いものが多い。
ロシア産エメラルドには、ザンビア・カフブのエメラルドにある角型の二相インクルージョンが観察される。ただし、ロシア産エメラルド中の二相インクルージョンの一部は、斑状や粒状の輪郭をもつという特徴がある(図23)。図23と図24に示した長い針状や管状の成長構造も観察されやすいが、他の産地のエメラルドにも観察されることがある。ロシアのエメラルドにとって最も強力な指標になるのは、結晶の底面に平行に配列する薄膜インクルージョンである(図25–26)。一般に平行状液膜インクルージョンと呼ばれている。

上には細長い成長管も見える。視野1.6 mm。



ロシアのエメラルドにも樹枝状の黒い固体インクルージョンと雲母が観察できるが、これらは前述したザンビアやブラジルなどの片岩ホスト/マグマタイプ鉱床からのエメラルドにも観察されるため、強力な指標にはならない。
マダガスカル
マダガスカルのエメラルドは南部のイナペラとマナンジャリから産出される。この地域のエメラルドはすべて花崗岩マグマに起因する片岩ホスト/マグマタイプに属する。そのうち、イナペラには同年代の二つのエメラルド鉱床があり、それらはそれぞれペグマタイトと苦鉄質岩の接触で形成されるものと、黒雲母片岩にホストされるものがある。
他の片岩ホスト/マグマタイプのエメラルドと同様、マダガスカルのエメラルドにもブロック状の二相インクルージョンが観察される(図27)。その他、特徴的な細長く湾曲した針状インクルージョンが観察できる(図28)。これらの針状インクルージョンはロシアのエメラルドにある同じ方向に配列した成長管と違って、交差して配列する。ただし、ジンバブエなど他の産地からのエメラルドにも類似するインクルージョンが観察されることがある。また、図29に示した隙間がある茎状のアクチノライトやトレモライトのインクルージョンも、マダガスカル産エメラルドによく見られる。



まとめ
エメラルドのインクルージは産地鑑別において重要な判断材料になる。インクルージョンだけで産地を決定できるケースも少なくない。インクルージョンだけで判断できない場合、赤外スペクトル、紫外–可視分光、蛍光X線分析、ICP–MSなどの測定方法と合わせて判断する必要がある。
本稿では、コロンビア、アフガニスタン、ブラジル、ザンビア、ロシア、マダガスカルのエメラルドにある特徴のあるインクルージョンを紹介した。表1に示したように、エメラルド鉱床は世界中に広く分布している。現在日本市場に流通するものはコロンビア、ブラジルとザンビアのエメラルドがメインになっているが、他の流通量の少ない産地のエメラルドと区別しにくい場合もあるため、注意を払わなければならない。◆