パライバ・トルマリン再考: 歴史的背景と原産地鑑別の可能性について

PDFファイルはこちらから2019年8月PDFNo.52

リサーチ室 北脇 裕士・江森 健太郎

パライバ・トルマリンとは・・・

図1:パライバ・トルマリン/ブラジル産
図1:パライバ・トルマリン/ブラジル産

 

パライバ・トルマリンは、1989年に宝石市場に登場した彩度が高く鮮やかな青色~緑色の銅着色のトルマリンです。
当初ブラジルのパライバ州で発見されたため、パライバ・トルマリンと呼ばれるようになりましたが(図1)、1990年代には隣接するリオグランデ・ド・ノルテ州からも採掘されるようになりました。さらに2000年代に入って、ブラジルから遠く離れたナイジェリアやモザンビークなどのアフリカ諸国からも同様の含銅トルマリンが産出されるようになり、そのネーミングに物議を醸しました。また、パライバ・トルマリンのほとんどは鉱物学的にエルバイトという種類に属しますが、モザンビーク産の一部のものはリディコータイトに属するものも知られています。現在では原産地や鉱物種に関係なく、青色~緑色の含銅トルマリンは広義でパライバ・トルマリンと呼ばれ、変わらぬ人気を持続しています。

 

パライバ・トルマリンの定義

<国際的には>
主要な国際的な宝石鑑別ラボで構成されるLaboratory Manual Harmonisation Committee (LMHC)では、原産地あるいは鉱物種に関係なく、青~緑色の含銅トルマリンを以下のようにパライバ・トルマリンと定義しています(文献1)
A Paraiba tourmaline is a blue (electric blue, neon blue, violet blue), bluish green to greenish blue, green or yellowish green tourmaline, of medium–light to high saturation and tone (relative to this variety of tourmaline), mainly due to the presence of copper (Cu) and manganese (Mn) of whatever geographical origin. The name of the tourmaline variety “Paraiba” is derived from the Brazilian locality Paraiba where this gemstone was first mined.
このようなパライバ・トルマリンの定義づけは、CIBJO(国際貴金属宝飾品連盟)およびICA(国際色石協会)においても踏襲されており、国際的に広く受け入れられています。

 

<日本では>
日本国内では、一般社団法人日本ジュエリー協会(JJA)と一般社団法人宝石鑑別団体協議会(AGL)の両団体による慎重な協議の上、2006年5月1日より、パライバ・トルマリンは、「銅およびマンガンを含有するブルー~グリーンのエルバイト・トルマリン」(産地は問わない)とされました。そして、元素分析を行い、分析報告書に限り、別名としてパライバ・トルマリンの記載が可能となりました。さらに「但し産地を特定するものではありません」とのコメントを記載し、原則として原産地鑑別は行わないこととしました。
このルーリングは、含銅リディコータイトが出現したことにより、2011年3月8日に改定され、「銅を含有するブルー~グリーンのトルマリン」と現在の鉱物種を問わないルールに変更されました。

 

トルマリンの分類

鉱物としてのトルマリンは、化学組成の幅がきわめて広く、スーパーグループを構成しています。
一般化学式は、
XY3Z6(T6O18)(BO3)3V3Wで表されます。XにはNa, Ca2+, K, □(空孔); YにはFe2+, Mg2+, Mn2+, Cu2+, Al3+, Li, Fe3+, Cr3+; ZにはAl3+, Fe3+, Mg2+, Cr3+; TにはSi4+, Al3+, B3+; BにはB3+; VにはOH, O2−; WにはOH, F, O2−が入ります。それぞれのサイト(格子位置)に入る元素の組み合わせにより、トルマリンには多くの種類が存在します。現在、IMA(国際鉱物学連合)のCNMNC(新鉱物・鉱物命名委員会)において33種が承認されています(文献2)。このうち、トルマリンとして宝石市場で見られるもののほとんどはエルバイトで、一部がリディコータイト(厳密にはフルオリディコータイト)、ドラバイトやウーバイトです。

エルバイト:    Na(Al1.5,Li1.5) Al6(Si6O18)(BO3)3(OH)3(OH)
フルオリディコータイト: Ca(Al,Li2) Al6(Si6O18)(BO3)3(OH)3F
ドラバイト:    NaMg3Al6(Si6O18)(BO3)3(OH)3(OH)
ウーバイト:    CaMg3(Al5Mg)(Si6O18)(BO3)3(OH)3(OH)

しかし、標準的な宝石鑑別方法では、トルマリンの種類を厳密に同定するのが困難なため、宝石名としては色名を冠して○○トルマリンと呼ばれるのが一般的です。例えばピンク色のトルマリンはピンク・トルマリンと呼ばれますが、鉱物学的にはエルバイトのものやリディコータイトのものが存在します。同様に銅着色の青色~緑色のパライバ・トルマリンも多くはエルバイトに属しますが、一部はリディコータイトです。

 

パライバ・トルマリンの特異性

トルマリン鉱物は、地質学的に種々の産状が見られますが、多くの宝石質トルマリンはペグマタイト中に産出します。ペグマタイトは、マグマが固化していく過程の晩期に形成される火成岩です。マグマの分化がある程度進んだあとには空洞が生じ、そこに大きな結晶が成長します。マグマから結晶が析出する際に、結晶に取り込まれやすい元素は、早期にマグマから失われていきます。いっぽう、結晶に取り込まれにくい元素(不適合元素と呼ばれる)は結晶化が進んでもマグマの中に残されます。したがって、マグマの残液に濃集しやすい特異な元素(イオン半径が大きい(小さい)、電荷が大きい(小さい))がペグマタイトに産するトルマリンに取り込まれます。
また、元素は地球化学的に親石元素と親銅元素に分類されます。前者は地殻(地球の表層付近)に濃集する傾向があり、後者はマントル下層(地球の深部)に濃集しやすい元素です。トルマリンを構成するほとんどの元素は親石元素で地殻に豊富ですが、パライバ・トルマリンの色の原因となる銅は親銅元素です。したがって、結晶中に両者が共存することはきわめて稀なことで、パライバ・トルマリンは特異な地質環境による限られた地域にしか産出していません。
パライバ・トルマリン中の銅(Cu)。このような地球化学的に相反する元素の稀有な共存は他にも見られます。ルビー、エメラルド、アレキサンドライトなどのクロム(Cr)です。コランダム、ベリル、クリソベリルを構成するBe, O, Al, Si などは地球浅部に濃集しやすい元素ですが、クロムは地球深部に存在しやすい元素です。クロムが希少な宝石の鮮やかな色の原因となることは良く知られていましたが、微量な銅(Cu)が着色に起因する宝石はパライバ・トルマリンがはじめての発見でした。

 

パライバ・トルマリンの発見

1982年、ブラジルのパライバ州バターリャ(Batalha)(図2a,b)の小高い丘で、Heitor Dimas Barbosa(以下エイトー)氏は数人の仲間とこれまでに見たことのない鮮やかな青色の石を発見しました。これがパライバ・トルマリンの最初の発見でした(図3)。

図2 − a ブラジルの地図
図2 − a ブラジルの地図

 

図2 − b 鉱山の位置
図2 − b 鉱山の位置

 

図3:最初にパライバ・トルマリンが発見された場所(酒巻英樹氏提供)
図3:最初にパライバ・トルマリンが発見された場所(酒巻英樹氏提供)

この地は、 Borborema Pegmatite Province (BPP)と呼ばれる地域で、風化したペグマタイトが広く露出しています。このペグマタイトから第一次大戦中には戦略物資として雲母、シーライト、タングステンなどが採掘されており、大戦後には銅、ニッケル、ウラン、金、イルメナイトなどが採掘されています(文献3)
エイトー氏が初めに見つけた青色石は品質の良くないものでしたが、1988年には透明度の高い原石が10kgほど見つかりました。エイトー氏はこれらを自身の出身地であるミナスジェライス州のベロオリゾンテや隣接するサンパウロ、リオデジャネイロで販売しようとしました。しかし、あまりにも鮮やかな色であったため誰も天然石と信じてくれなかったと話しています(文献4)。その後、GIAにて鑑別を取り、翌1989年にツーソンジェムショーに出品しました。これがパライバ・トルマリンのメジャーデビューとなり、その鮮やかな色は “ネオン・ブルー”あるいは“エレクトリック・ブルー”と賞賛されました。そして、ショーの初めには$80/ctだったものが、最終的には$2,000/ctに跳ね上がるという伝説が生まれました(文献5)。1989–1990年にかけてさらに15–20kgの原石が採取され、このうちの10kgが高品質であったといわれています(文献4)

 

ブラジル/パライバ州の鉱山

人口が500 人ほどのパライバ州の小さな村バターリャ(図4)で発見された銅着色のトルマリンは、パライバ・トルマリンと呼ばれるようになり、一躍大人気の宝石となりました(図5)。

図4:バターリャの街全景(2005年10月撮影)
図4:バターリャの街全景(2005年10月撮影)

 

図5:パライバ・トルマリン/バターリャ産 左から8.65ct, 14.99ct, 3.35ct(撮影:小林正明氏)
図5:パライバ・トルマリン/バターリャ産
左から8.65ct, 14.99ct, 3.35ct(撮影:小林正明氏)

 

1990–1991年にかけて生産のピークを迎えますが、価格が急上昇したため、鉱山の所有権の係争問題が発生しました。発見者のエイトー氏は地元の人間ではなかったことで、さまざまな政治的な外圧を受けたようです。10年近くにもおよぶ裁判の結果、最終的にバターリャの鉱区は3分割されることとなりました(図6)。

図6:バターリャ鉱山全景(2005年10月撮影):写真左側からエイトー氏、ジョンヒッキー氏、ハニアリー氏の鉱区
図6:バターリャ鉱山全景(2005年10月撮影):写真左側からエイトー氏、ジョンヒッキー氏、ハニアリー氏の鉱区

 

最初に発見された鉱脈を含むエリアをエイトー氏が獲得し、地元の土地所有者のジョンヒッキー氏と地元有力者のハニアリー氏がそれぞれの採掘権を得ることとなりました。筆者(KH)は2005年10月にこの地を訪問する機会に恵まれ、バターリャ地区のそれぞれの鉱区と後述するリオグランデ・ド・ノルテ州のムルング鉱山とキントス鉱山を視察しています(文献6)

 

 

図7:基盤の石英片岩(左)にペグマタイト(右)の貫入(写真横幅およそ1m)
図7:基盤の石英片岩(左)にペグマタイト(右)の貫入(写真横幅およそ1m)

この地は新原生代(およそ6億5000万−5億年前)の変成岩(主にクォーツァイト)が広がっており、そこにペグマタイトが貫入しています(図7)。ペグマタイトは、アルバイトが主体の長石、石英、白雲母およびトルマリンで構成されており、長石の大部分はカオリンと呼ばれる柔らかな白い粘土に変質しています。そのため岩盤は比較的掘りやすく、坑道はたいてい手作業で掘り進められています。バターリャ地区の鉱区にはペグマタイトの脈が少なくとも6つ確認されており、それぞれに番号が振られ “No.○ライン”と呼ばれています。
エイトー氏は最初に発見した場所近くから縦坑を掘り(図8)、鉱脈に沿って横坑(No.1ラインとNo.2ライン)を掘り進めています。常に10人程度のスタッフが働いていましたが、幾度となく資金難や隣接するハニアリー氏との地下での所有権の係争で採掘が中断しているようです。2009年からはご子息も加わって、今でも小規模の採掘が行われています。

図8:エイト-氏鉱区の縦坑入り口(酒巻英樹氏提供)
図8:エイト-氏鉱区の縦坑入り口(酒巻英樹氏提供)

ハニアリー氏の鉱区は高い塀で囲まれ、外部からの侵入者を防いでいます(図9、図 10)。

 

図9:ハニアリー氏の鉱区外壁
図9:ハニアリー氏の鉱区外壁

 

図10:ハニアリー氏の鉱区入り口
図10:ハニアリー氏の鉱区入り口

 

図11:ハニアリー氏の鉱区の坑道
図11:ハニアリー氏の鉱区の坑道

最盛期には30 人ほどのスタッフが働いており、活発な採掘が行われていました(図 11)。筆者が訪れた2005年当時には縦坑の深さが30mほどでしたが、2014年には120mにも達していたそうです(文献4)。2015年頃にはかなりの量が採掘されたようですが、現在は採掘が再び中断しているようです。

 

ジョンヒッキー氏の鉱区では最盛期には50 人ほどのスタッフを擁し、重機を使用して採掘していました(図12)。しかし、今では以前掘り起こした土砂から鉱石を細々と選別しているだけのようです。ただ、昔の在庫があり、時折市場に供給されているようです。

図12:ジョンヒッキー氏の鉱区
図12:ジョンヒッキー氏の鉱区

 

2006年の初め頃、パライバ州のバターリャ鉱山から直線で北東に30kmほどの地にグロリアス鉱山が開坑されました(図 13)(文献7)。ここの地質はバターリャと同じく変質したペグマタイトで、白いカオリン質の粘土からなります。カオリンは高級な陶磁器の原料となりますが、この地のカオリンは特に品質が良いとのことです。そのためカオリンを主な鉱石として販売する傍らにパライバ・トルマリンが採掘されています。しかし、ほとんどのものは小粒なため、カット研磨すると1–2mmのサイズとなります(図14)。

図13:グロリアス鉱山(グロリアスジェムス提供)
図13:グロリアス鉱山(グロリアスジェムス提供)

 

図14:グロリアス鉱山から産出した パライバ・トルマリン (0.096ct–0.23ct)
図14:グロリアス鉱山から産出した
パライバ・トルマリン (0.096ct–0.23ct)

 

ブラジル/リオグランデ・ド・ノルテ州の鉱山

パライバ州に隣接したリオグランデ・ド・ノルテ州にも2つのパライバ・トルマリンの鉱山があります。パライバ州に近い方からキントス(Quintos)鉱山とムルング(Mulungu)鉱山です。
キントス鉱山は人口約2万人のパレリアス(Parelhas)の街から南に 10kmほどの山腹にあります(図 15)。

図15:キントス鉱山坑道入り口
図15:キントス鉱山坑道入り口

 

図16:パライバ・トルマリン/キントス鉱山産 (左から5.90ct, 4.16ct, 11.79ct)(撮影:小林正明氏)
図16:パライバ・トルマリン/キントス鉱山産
(左から5.90ct, 4.16ct, 11.79ct)(撮影:小林正明氏)

 

この鉱山はドイツのポールビルド社が経営していたため、地元ではジャーマンと呼ばれていました。1995 年にここのペグマタイトから鮮やかな青色のトルマリンが発見され (図16)、90年代の終わりごろから本格的な操業が始まりました。鉱山には最盛期で60名ほどのスタッフが従事しており、バターリャよりも機械化が進んでいる印象がありました(図17)。

図17:キントス鉱山のプラントの一部
図17:キントス鉱山のプラントの一部

 

この地のペグマタイトもバターリャと同じく、アルバイトが主体の長石、石英、白雲母とトルマリンで構成されています。ただ、バターリャと違って長石の変質が進行しておらず、岩盤は固いままです。そのため、手掘りはほぼ不可能で、電動工具や発破が用いられています。ここの縦坑は 120mほどもあり、横坑の全長は5kmにも達しています(図 18)。

図18:キントス鉱山の坑道
図18:キントス鉱山の坑道

 

白いペグマタイトの中に赤色のレピドライト(リシア雲母)が見られると、パライバ・トルマリンの出る兆候になります(図 19)。

図19:キントス鉱山坑道で見つかったパライバ・トルマリン
図19:キントス鉱山坑道で見つかったパライバ・トルマリン

 

そのため赤い結晶を見つけると、作業はゆっくりと慎重になります。採掘された岩石は選別機にかけられ、ある程度の細かさに砕かれた後、女性スタッフの手により選別されていきます。キントス鉱山では数 ct のブルーの他にグリーンも産出していましたが、産出量は限定的で、残念ながら10年ほど前に閉山されました。

 

ムルング鉱山はパレリアスの街から北東5kmの山麓に位置しています。キントス鉱山よりも早く、1991年には含銅トルマリンが発見されています(図 20)。

図20:パライバ・トルマリン/ムルング鉱山産(左から2.75ct, 4.24ct)(撮影:小林正明氏)
図20:パライバ・トルマリン/ムルング鉱山産(左から2.75ct, 4.24ct)(撮影:小林正明氏)

 

Mineracao Terra Branca社が所有しているので一般にはMTB鉱山として知られています。この鉱山では最盛期に100名以上のスタッフが従事しており、砕石された鉱石からパライバ・トルマリンを選別する女性スタッフだけでも60名以上働いていました。選別は1次選別と2次選別があります。1次選別では白いテーブルの上に山積みになった鉱石からパライバ・トルマリンを探します(図 21)。

図21:ムルング鉱山での選鉱風景
図21:ムルング鉱山での選鉱風景

 

目当ての青い結晶を見つけると、水の入ったプラスチック容器に貯めていきます。2次選別は鍵のかけられた部屋の中でパライバ・トルマリンの原石を大きさや品質でより分けていきます。スタッフ数人に1人の割合で監視員が作業を見守っています。それほどまでに貴重な原石であることがうかがい知れます。ムルング鉱山からは時折大粒の自形結晶も見つかりますが(図22)、1ct未満の小粒の原石が多数産出しています。

図22:石英に埋没したパライバ・トルマリン 原石/ムルング鉱山産
図22:石英に埋没したパライバ・トルマリン
原石/ムルング鉱山産

 

掘り出された時から鮮やかなネオン・ブルーをしており、加熱の必要はありません。原石の多くはタイのバンコクに送られます。日本国内に輸入されている小粒のパライバ・トルマリンはほとんどがムルング鉱山から産出したものです。ムルング鉱山は今でも活発に開発が進められています。最近、鉱山の名称がMTBから“Brazil Paraiba Mine”と改称され、新たな重機を導入して24時間体制で採掘が行われています。

 

ナイジェリア産のパライバ・トルマリン

2001 年の夏ごろからアフリカ産といわれる色のやや淡い含銅トルマリンが国内市場に持ち込まれ始めました(図 23)。

図23:パライバ・トルマリン/ナイジェリア産 タイプ2( 前列0.3ct–0.5ct, 後列1.24ct )
図23:パライバ・トルマリン/ナイジェリア産
タイプ2( 前列 0.3ct−0.5ct, 後列 1.24ct )

 

これらは後にナイジェリア産ということが明らかになりますが、もともとはアフリカのディーラーが含銅トルマリンと知らずにタイで販売していたものを国内の業者が仕入れていたようです。蛍光X線分析で調べたところ、銅、マンガン(Mn)、ビスマス(Bi)を含有しており、ブラジル産のパライバ・トルマリンと類似していました。しかし、わずかに鉛(Pb)が検出され、これまでとは異なる新しい鉱山からのものではないかと感じていました。その後、産地情報が明らかになってくると、この色の淡い含銅トルマリンはナイジェリアのIlorin州Ofiki産であることが判りました(文献8)。これらを扱っている国内の業者間ではタイプ2と呼ばれており、ブラジル産とは区別されていました。このいっぽうで、業者間でタイプ1と呼ばれるナイジェリア産の含銅トルマリンの存在が明らかとなりました(図 24)。

図24:パライバ・トルマリン/ナイジェリア産タイプ1( 前列1.03–2.63ct, 後列1.66–4.00ct )
図24:パライバ・トルマリン/ナイジェリア産タイプ1( 前列1.03–2.63ct, 後列1.66–4.00ct )

 

こちらはIbadan州Edoukou鉱山産のもので産出は限定的でした。そのため市場にはほとんど流通しなかったようですが、色も鮮やかで蛍光X線分析ではブラジル産と明確には区別ができないものでした。

 

モザンビーク産のパライバ・トルマリン

2005 年夏頃からモザンビーク産の含銅トルマリンが国内の市場に現れました。当初は青色が鮮やかな1ct 未満の小粒石でしたが(図25)、その後、銅含有量が少なくやや色の淡いものが大量に流通するようになりました(図26)。

図25:初期に産出した濃色のパライバ・トルマリン/モザンビーク産( 0.5–1.5ct )
図25:初期に産出した濃色のパライバ・トルマリン/モザンビーク産(0.5–1.5ct)

 

図26:淡色のパライバ・トルマリン/ モザンビーク産( 0.47–3.07ct )
図26:淡色のパライバ・トルマリン/モザンビーク産(0.47–3.07ct)

 

これらには10–20ctとサイズの大きなものも含まれており、パライバ・トルマリンの名称を与えるかどうかの問題が生じました。このパライバ・トルマリンの呼称問題は国際的な関心ごととなり、関連機関とともに慎重な検討がなされました。その結果、産地を問わず、青色-緑色の含銅トルマリンをパライバ・トルマリンと呼ぶこととなりました。このような宝石のルーリングに関して短期間で国際的なコンセンサスが得られたのはきわめて珍しいことです。たいていは何らかの利害関係が働き、最終的な合意が得られないことが多いものです。それだけ、パライバ・トルマリンが宝飾業界にとって重要なアイテムであるということの表れだと思われます。
モザンビーク産の含銅トルマリンは北東部のAlto Ligonha ペグマタイト地域から産出しています。最初に発見されたのはNampula南東 100mほどのMavuco村近郊でした (文献9, 10)。2005年の市場への登場から現在まで、この地の含銅トルマリンは定常的に産出を続けており、世界の旺盛な需要をまかなっています。
2010 年の 10 月頃から日本市場に新しいタイプの含銅トルマリンが流通を始めました。銅の含有量は蛍光X線分析の実測値で0.2–0.6%程度と低く、色もこれまでのモザンビーク産とほぼ同様の薄い色調でした。しかし、相当量のCa(カルシウム)が含まれており、鉱物的にはエルバイトではなくリディコータイトに属するものでした(図 27)。

図27:パライバ・トルマリン/リディコータイト
図27:パライバ・トルマリン/リディコータイト

 

その後、このリディコータイトの含銅トルマリンもLMHCのルーリングにおいてパライバ・トルマリンと呼ばれることとなり、業界内外に広く認知されました。この新しいリディコータイトタイプのパライバ・トルマリンもモザンビーク産ですが、従来のMavuco村から北東に10kmほどのMaraca村近郊で産出しているとのことです(文献11, 12)
このリディコータイトに属するパライバ・トルマリンは 2010 年に市場に登場しましたが、その後一定量が継続的に市場に流通しています。CGL の統計では、含銅リディコータイトはパライバ・トルマリン全体の10–15%に相当しています。

 

パライバ・トルマリンの原産地鑑別

パライバ・トルマリンはその名称の由来となったブラジルのパライバ州だけでなく、隣接するリオグランデ・ド・ノルテ州からも産出しており、これらは総じてパライバ・トルマリンとして取引されてきました。さらにはナイジェリアやモザンビークからも同様の含銅トルマリンが産出するようになり、結果的にすべてがパライバ・トルマリンと呼ばれるようになりました。そのため、パライバ・トルマリンの原産地を特定したいという潜在的な欲求が生まれ、原産地鑑別に関するさまざまな研究が行われてきました。
パライバ・トルマリンの鮮やかな青色の色調は含有する銅イオンに因ります。そのため、銅の含有量が高いほど色は鮮やかです。概してブラジル産のものは銅の含有量が高く色鮮やかですが、ナイジェリア産のタイプ2やモザンビーク産の多くは銅の含有量が低めで色調が淡めです。もちろん、例外も多くあり、色調だけで産地を特定することはできません。
ブラジル産の含銅トルマリンはペグマタイトから直接採掘されています。ナイジェリア産とモザンビーク産の含銅トルマリンは二次鉱床で礫として見つかるため、母岩は特定されていませんが、やはりペグマタイト由来と考えられています(文献12、13)。ペグマタイト鉱物は空洞のような比較的自由な空間で成長するため、インクルージョンをほとんど含みません。パライバ・トルマリンの多くもインクルージョンに乏しく、液体や液膜インクルージョンを伴う程度です。ブラジル産の含銅トルマリンには自然銅のインクルージョンが見つかっており、高濃度の銅の含有に関連があるとされています(文献 14)。筆者(KH)の経験では、このような自然銅のインクルージョンは一部のナイジェリア産にも見られましたが、モザンビーク産には観察例がありません。ナイジェリア産とモザンビーク産の含銅トルマリンに見られる管状インクルージョンは、しばしば酸化鉄で充填されています(図28)。

図28:酸化鉄が充填したチューブinc.(ナイジェリア産)
図28:酸化鉄が充填したチューブinc.(ナイジェリア産)

 

これらは二次鉱床で鉄分の多い砂礫中に見つかるためと考えられます。いっぽう、一次鉱床のブラジル産含銅トルマリンの管状インクルージョンには一般に酸化鉄の汚染は見られません。
パライバ・トルマリンの原産地鑑別には化学分析(ケミカル・フィンガープリント)が有効です。トルマリンは化学式が複雑でさまざまな元素を取り込みます。そのため、成長環境の変化によって取り込まれる元素の種類や量比に相違が生じやすいのです。先述の通り、ほとんどのパライバ・トルマリンは鉱物的にはエルバイトに属しますが、モザンビークの Maraca 産のみがリディコータイトに属しています。したがって、蛍光X線分析によってCaが多く、リディコータイトに分類されれば、現状ではモザンビーク産といえます。また、リディコータイトの含銅トルマリンは長波紫外線下での蛍光が強いことが知られています。これはCe(セリウム)やNd(ネオジウム)などの軽希土類元素を多く含むためです (文献11, 15)。したがって、紫外線蛍光の強いパライバ・トルマリンはモザンビーク産である可能性が高くなります。この軽希土類元素の含有はラマン分光法によっても確認することが可能です(文献11)
筆者らは各産地の含銅トルマリンをLA–ICP–MSを用いて詳細な分析を行い、世界に先駆けてケミカル・フィンガープリントを作成してきました(文献9, 16)。今では国際的な宝石鑑別ラボではLA–ICP–MS分析が標準となっていますが、最近ではLA–ICP–TOF–MSを用いた分析結果も公表されています (文献17)。さらにはSIMSを用いた同位体分析でLi(リチウム)とB(ホウ素)の同位体比に産地による相違が見られるとの報告もあります(文献18)
このように化学分析はパライバ・トルマリンの原産地鑑別に不可欠なものとなっています。CGLではLA–ICP–MS分析で得られたデータを判別分析(図29)やロジスティック回帰分析 (図30)などの統計学的な手法を用いて解析を行い、原産地鑑別の精度を高める研究も行っています(文献19)。◆

図29:パライバ・トルマリンの判別分析によるグルーピング (文献18より)
図29:パライバ・トルマリンの判別分析によるグルーピング (文献18より)

 

図30:ロジスティック回帰分析によるパライバ・トルマリンの2産地比較(文献18より)
図30:ロジスティック回帰分析によるパライバ・トルマリンの2産地比較(文献18より)

 

文献
1.LMHC Information Sheet#6 Paraiba tourmaline version.7 Dec.2012
2.Henry D.J., Dutrow B.L. (2018) Tourmaline studies through time: contributions to scientific advancements. Journal of Geoscience, Vol. 63, pp77–98.
3.Beurlen H. (1995) The Mineral Resources of the Borborema Province in Northeastern Brazil and its Sedimentary Cover: A Review. Journal of south American Earth Sciences, Vol.8 (3–4), pp365–376.
4.Hsu T. (2018) Paraiba Tourmaline from Brazil the neon–blue burn. InColor, Vol.42(2), pp42–50.
5.古屋正司. (2007) パライバ・トルマリン – 脳裏に焼きつくエレクトリック・ブルーの輝き. 宝石の世界, 日独宝石研究所.
6.北脇裕士. (2005) パライバ・トルマリンの故郷を訪ねて. Gemmology, 2005年12月号, pp19–23
7.Furuya M. (2007) Copper–bearing tourmalines from new deposits in Paraiba state, Brazil. Gems and Gemology, Vol. 43, No.3, pp236–239.
8.Furuya M. (2004) Electric blue tourmaline from Nigeria: Paraiba tourmaline or new name? Proceedings of the 29th International Gemmological Conference 2004, pp111–112.
9.Abduriyim A., Kitawaki H., Furuya M., Schwartz D. (2006) “Paraiba”–type copper–bearing tourmaline from Brazil, Nigeria, and Mozambique: Chemical fingerprinting by LA–ICP–MS. Gems and Gemology, Vol. 42, No.1, pp4–21.
10.Laurs B. M., Zwaan J. C., Breeding C.M., Simmons W.B., Beaton D., Rijsdijk K.F., Befi R., Falster A.U. (2008) Copper–bearing (Paraiba–type) tourmaline from Mozambique. Gems and Gemology, Vol. 44, No.1, pp4–30.
11.Milisenda C.C., Müller. (2017) REE photoluminescence in Paraiba type tourmaline from Mozambique. Proceedings of the 35th International Gemmological Conference 20017, pp71–73.
12.Pezzotta F. (2018) Mozambique Paraiba Tourmaline Deposits–An Update InColor, Vol.42(2), pp52–56.
13.Milisenda C.C., Henn U. (2001) Cuprian tourmalines from Nigeria. Z. Dt. Gemmol. Ges 50, No.4, pp217–223.
14.Brandstätter F., Niedermayer G. (1994) Copper and tenorite inclusions in cuprian–elbaitetourmaline from Paraiba, Brazil. Gems and Gemology, Vol. 30, No.3, pp178–183.
15.Katsurada Y. (2017) Cuprian liddicoatite tourmaline. Gems and Gemology, Vol. 53, No.1, pp1–8.
16.Milisenda C.C., Horikawa Y., Emori K., Miranda R., Bank F.H., Henn U. (2006) A new find of cuprian tourmalines in Mozambique. Z. Dt. Gemmol. Ges 55, No.1–2, pp5–24.
17.Wang H.A.O. (2019) Paraiba research update: An elemental analysis of Paraiba tourmaline from Brazil. SSEF Facette Vol.25, pp30–31.
18.Shabaga B.M., Fayek M., Hawrhorne F.C. (2010) Boron and Lithium isotopic compositions as provenance indicators of Cu–bearing tourmalines. Mineralogical Magazine, vol.74, No.2, pp241–255.
19.江森健太郎、北脇裕士.(2017) 多変量解析の宝石学への応用 CGL通信 Vol.39, pp1–11.

 

 

 

CVDダイヤモンド

PDFファイルはこちらから2019年8月PDFNo.52

関西学院大学 理工学部 鹿田 真一

「合成ダイヤモンド」の有力合成法であるCVD(Chemical Vapor Deposition)に関してご紹介したいと思います。前回(CGL通信No.50)に引き続き、少し慣れない分野に、どうぞ最後までお付き合いください。

 

1. CVD合成法

高温高圧(High Pressure High Temperature :  HPHT)によるダイヤモンドの合成は、地球の上部マントルと同様の環境を再現したもので、典型的には2100℃、7GPaというような条件下での、固相液相平衡状態における合成である。これに対して、C V D (Chemical Vapor Deposition)は、固相に直接、気相を接することによって、固体表面で一層ずつ成長していく非平衡の合成方法である。気相を提供する手法によって図1に示すような方法が報告されている。この中で圧倒的に広く用いられているのが、熱フィラメントCVDとマイクロ波プラズマCVDである。いずれも1980年頃、つくばの無機材質研究所(現 物質・材料研究機構)の加茂氏らにより発明された合成法であり1)2)など、日本が誇るべき研究成果である。ダイヤモンドがグラファイトに変換せずに合成する温度は、概ね850~1000℃程度であり、約2800℃程度の高温プラズマに至近距離で接する。この様子を図2に模式的に示す。一般的に熱フィラメントCVD(Hot Filament CVD)はHFCVDと略記され、マイクロ波プラズマCVD(Microwave Plasma CVD)はMPCVDと略記される。

 

図1.CVD法の種類
図1.CVD法の種類

 

図2.CVD法における非平衡
図2.CVD法における非平衡

 

1)熱フィラメントCVD

W(タングステン)やTa(タンタル)などの金属フィラメントに通電し、2000~2200℃に加熱し、そのエネルギーで反応ガスとキャリアガスを分解し、下部の基板にダイヤモンドを成長させる手法である。図3 a)に熱フィラメント合成時の写真を示す。フィラメントから数mmのところに基板を設置するので、高速成膜する場合には短距離で基板温度が高くなるため、下部の治具を冷却するのが一般的である。成長速度は、0.5~5µm/h程度である。それを大面積で補完可能であり、A3シート程度の大きさのものは既に導入実用化されている。工具先端部へのコーティングなどは、フィラメントの下に、縦に工具をズラッと並べた形で大量生産可能であり、もはや「普通」の工業生産品となっている。

 

図3.CVD法の固相 – 気相界面の写真 a)熱フィラメントCVD法
図3.CVD法の固相 – 気相界面の写真 − a)熱フィラメントCVD法

 

典型的な2つのタイプの装置を、図4 に示す。

図4.熱フィラメント装置の例

図4.熱フィラメント装置の例 − SP3社の装置_横張り
図4 − a)SP3社の装置(横張り)

a)は普通のフィラメント横張型装置である。上記のように通常は、下部に基板を設置し合成するが、同時に上部にも設置可能な設備もある。写真の装置は、2チャンバ型で、第一チャンバ成膜中に第二チャンバの設定をすることで、フル稼働して量産性に対応している。

 

図4 − b)CEMECON社の装置(縦張り)
図4 − b)CEMECON社の装置(縦張り)

b)のタイプはフィラメント縦張り型で、数セット並べた構成になっていて、量産性に優れている。これらいずれもレシピ設定してあり、基板セットしてボタンを押すだけの設備に出来上がっている。装置構成が簡単であり、日本企業では独自の工夫を凝らした自作設備が用いられている。

 

2)マイクロ波プラズマCVD

 

図3.CVD法の固相 – 気相界面の写真 a)マイクロ波プラズマCVD法
図3.CVD法の固相 – 気相界面の写真 − b)マイクロ波プラズマCVD法

 

マイクロ波CVDの合成中の写真を図3 b)に示す。用いるマイクロ波は、日本ではISM帯(総務省指定のフリー周波数帯:Industry, Scientific and Medical band)の2.45GHz(2.4~2.5)が主流である。入力パワーは概ね1〜6kWが主流である。海外では950MHz帯がISM帯に指定されている国が多く、低周波数の方が長波長で、成膜面積が大きくなるため多用されている。MPCVDも、世界中で既存設備が市販されている。典型的な装置群を図5a) に内部模式図と共に示す。b)は、所謂「セキ型」と呼ばれるコーンズテクノロジー社の装置(日本:元セキテクノロジー社)で、周波数は2.45GHzを用いている。この図は下部からマイクロ波を導入してアンテナで広げるタイプのものである。これに対して、大面積用に波長の大きな915MHzを用いるのがc)d)に示した海外の装置である。出力もこの周波数帯は30kWというような大出力装置も可能である。概ね4インチΦ(約10cmΦ)面積に対応可能である。成膜速度は、入力パワーに依存し、典型的には3~50µm/h程度である。HFCVDと異なり、高速・小面積合成となる。合成速度×合成面積で見ると、HFCVDとMPCVDは、ほぼ同等といえよう。
宝石用の原石合成は、ある程度厚めのダイヤモンドが必要であり、殆どの場合MPCVDが用いられている。例えば25µm/hの速度で連続合成して、1mm厚合成に40時間、6mm厚で240時間(10日)というイメージになる。

 

図5. マイクロ波CVDの典型的な装置群

 

図5 − a) マイクロ波CVDの模式図
図5 − a) マイクロ波CVDの模式図

 

 b) コーンズ装置(所謂セキ型)
図5 − b) コーンズ装置(所謂セキ型)

 

図5 − c) Lamda Technology装置 (Michigan Univ.)
図5 − c) Lamda Technology装置 (Michigan Univ.)

 

図5 − d) AIXTRON装置 (Fraunhofer Inst.)
図5 − d) AIXTRON装置 (Fraunhofer Inst.)

 

3)合成のテクノロジー

単結晶の合成は、一般的にステップフロー成長という物理に基づいている。図6に示すように基板を結晶のジャスト面(例えば(001)面)から数度ずらすと、図のように<110>方向に「原子のステップ」が現れる。実際のダイヤモンド表面のステップは、図6 b) のように凹凸が激しい。ガスから分解生成された活性種が、この凹凸のエッジ部(キンク)にとりついて順次成長していく。ダイヤモンドでは拡散しにくく「ステップフロー」しないという説もあるが、いずれにしても、ステップ形成(オフ角基板利用)することで良好な結晶成長が実現されている。

 

図6. ダイヤモンド成長フロント

図6 − a)一般的なエピ成長模式図
図6 − a)一般的なエピ成長模式図

 

図6 − b)STMによるエピ成長表面
図6 − b)STMによるエピ成長表面

 

図7 ダイヤモンド合成可能なガス組成(経験則)
図7 ダイヤモンド合成可能なガス組成(経験則)

 

反応に用いる原材料であるが、まず図7に示すようなC、H、Oを置いた図を考える。例えばCH4(メタン)はCが一つ、Hが4つであるので、4/5のところに位置する。このように様々な原料の組成をプロットして、経験的にダイヤモンド合成が報告されている領域を示したのが、赤で囲んだ領域で、これはBachmann diagramと言われる3)。実に様々な原料を用いることが可能である。図から、H2とCOの混合であれば、どんな比率で混ぜてもダイヤモンド合成が可能であることがわかる。CH4とCO2であれば、概ね3:2くらいで混合すると合成可能であることがわかる。以前アルコールから合成した話題が新聞を賑わしたが、要するにC、H、Oを有するのでこの領域に入る。よくある質問として、ダイヤモンド合成の価格が話題になることも多いが、このようにどんな原料を用いても合成可能であるということは、大きなダイヤモンド合成の特徴と言えよう。最近は様々なガス純化フィルタもあり、安価でCを複数含む高速成長ガスを用いることも可能である。例としてCH4よりC22(アセチレン)を用いる、といった選択ができる。原料ガスはいずれも毒性はなく、原料や排気ガスを除害する必要もないため、設備と付帯設備は極めて安価である。

 

2. 品質

宝石としてもっと重要なダイヤモンドの光学的特性には、原料ガス中の不純物低減と合成チャンバの真空制御が重要である。原料ガスは高純度のものを純化フィルタを通せば、半導体級の品質も可能で全く問題ない。HPHT合成のように金属インクルージョン起因の欠陥を制御しにくいという問題がない。真空も、チャンバのリークを抑える設計と、高真空用のポンプ使用で残留窒素レベルを下げることが可能である。逆に、色付きダイヤ合成も可能で、例えばブルーダイヤモンドにはトリメチルボロンなどをH2で希釈したガスで、濃度を高精度に制御可能である。高品質ダイヤモンドの安定的な合成は、CVDの得意とするところである。
それに対して欠陥起因の不良については、一層一層、非平衡で成長させるCVDが不得意とするところであり、成長様式起因と言える。欠陥に関しては、X線トポグラフィーを用いた回折像観察が全転位を網羅観察できるので有用である。CVD結晶を観察した例を示す。放射光を用いて浅い入射のベクトル[202]を用いた観察例を図8に示す。a)とb)は市販の光学特性に優れる結晶であるが、転位を大量に含んでいる。一か所から複数転位が走る様子があちこちに見て取れる。

図8 − a)市販CVD結晶1(薄厚)
図8 − a)市販CVD結晶1(薄厚)

 

図8 − b)市販CVD結晶2(薄厚)
図8 − b)市販CVD結晶2(薄厚)

 

図8 − c)宝飾用(北脇氏から借用)
図8 − c)宝飾用(北脇氏から借用)

これは、基板から引き継いだ欠陥、研磨不良などで成長界面から新たに発生する欠陥など様々なものを含んでいる。b)の結晶2に至っては、面積の80%程度で何かしらの欠陥が見受けられる。c)は中央宝石研究所の北脇氏からお預かりした流通している宝飾用CVD結晶の像である。成長方向が不明なので解釈は難しいが、発生した欠陥が引き継がれていく様子、CVD特有の「すじ模様」が見える。これは、成長時のフロントが、合成中断や合成条件(電源のノイズなど)のふらつきにより発生するもので、CVD結晶特有であるが技術的に解決可能である。

 

3. 今後の展望

以上の「CVDでは欠陥が発生しやすい」という問題を解決するために、重要なことがいくつかある。まずは種結晶に関して、大型基板を用いることが重要である。

 

図9.CVD成長のエッジ部写真
図9.CVD成長のエッジ部写真

図9に示すように、合成時のエッジ部におけるプラズマ集中から、どうしても外周部は異常成長が発生し、単結晶の取れる面積が減少する。

 

図10.種結晶としてのHPHT合成結晶の欠陥とサイズ

 図10.種結晶としてのHPHT合成結晶の欠陥とサイズ − a)市販のHPHT結晶のトポ像
図10 − a)市販のHPHT結晶のトポ像

 

図10 − b)露NDT社の大型基板
図10 − b)露NDT社の大型基板

図10に見られるように、通常の市販のHPHT合成結晶のレベルは大きく向上していて、欠陥密度は100/cm2を下回っている4)。またサイズも10mm角のサイズのものが市販され、最高15mm角まで実現されている。また欠陥に関しては、最近注目される報告がある。それはHFCVDを用いて、本来「不純物」であるWのインクルージョンが、転位を終端することが可能という論文である5)。これはHFとMPをうまく融合して合成に使うことで、新しい技術で課題を解決し、CVD法のウィークポイントをカバーできる可能性がある。その後H3センタ、NVセンタ、N3センタなど様々な欠陥センタの導入により、積極的に光学特性をコントロールしていく方向で、さまざまな色調の宝飾用CVD合成が可能になると考えられる。◆

 

引用文献

1)S.Matsumoto et al., Jap.J.Appl.Phys., 21 (1982) pp.L183–185
2)M. Kamo et al.J.Crystal Growth, 63 (1983) pp.642–644
3)P.Bachmann, Diam.Relat.Mat.,1 (1991) 1
4)S.Shikata et al.,, Material Science Forum, 924(2018) pp.208–211
5)S.Ohmagari et al., Appl.Phys.Lett.,114, (2019) 082104

 

1−鹿田先生 RGB72

鹿田 真一
1954 生
1978 京都大学工学部卒
1980 京都大学大学院工学研究科修士課程卒

職歴
住友電気工業
光通信用デバイス研究開発と事業
(GaAs IC, ダイヤモンドSAWデバイス)
産業技術総合研究所
ダイヤモンドの基盤技術とパワーデバイス研究
関西学院大学 理工学部
ダイヤモンド中心にワイドギャップ材料とデバイスの研究
現在:関西学院大学  理工学部 教授(工学博士)